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Abstract—Semantic Web technology is used extensively in the
health domain, due to its ability to specify expressive, domain-
specific data, as well as its capacity to facilitate data integration
between heterogeneous, health-related sources. In the health
domain, mobile devices are an essential part of patient self-
management approaches, where local clinical decision support
is applied to ensure that patients receive timely clinical findings.
Currently, increases in mobile device capabilities have enabled the
deployment of Semantic Web technologies on mobile platforms,
enabling the consumption of rich, semantically described health
data. To make this semantic health data available to local decision
support as well, Semantic Web reasoning should be deployed on
mobile platforms. However, there is currently a lack of software
solutions and performance analysis of mobile, Semantic Web
reasoning engines. This paper presents and compares the mobile
benchmarks of 4 reasoning engines, applied on a dataset and rule-
set for patients with Atrial Fibrillation (AF). In particular, these
benchmarks investigate the scalability of the mobile reasoning
processes, and study reasoning performance for different process
flows in decision support. For the purpose of these benchmarks,
we extended a number of existing rule engines and RDF stores
with Semantic Web reasoning capabilities.

I. INTRODUCTION

Semantic Web technologies are extensively used in the
health domain, as they provide a formal model to represent
healthcare knowledge. In doing so, these technologies enable
expressive reasoning over health data, allowing clinical deci-
sion support to be realized. In addition, the use of specialized
medical ontologies facilitate data integration between heteroge-
neous data sources that characterize a typical health scenario;
including disparate sources on drugs, patients and diseases
[1]. An important aspect of Semantic Web frameworks is the
provision of model-based reasoning capabilities, which allow
new facts to be inferred based on known rules. In this regard,
there exist a large number of reasoning engines, using an
assortment of reasoning techniques, that are able to reason over
knowledge represented as RDF triples. These reasoners range
from description logic reasoners based on OWL semantics
[2], to general-purpose reasoners using various generic rule
languages such as SWRL [3] and SPIN [4]. In general, rule-
based reasoning techniques, used for decision support applica-
tions, allow a clear separation between domain knowledge and
application logic. As a result, domain knowledge can be easily
edited, updated and extended without the need to disrupt the
underlying decision support application.

Typically, knowledge-centric decision support systems, in-
corporating ontology-based knowledge representation and rea-

soning capabilities, have been implemented as desktop or
server applications. With the emergence of mobile devices
with adequate processing capabilities and memory storage,
there is a case for developing mobile decision support systems,
where the knowledge and application logic is contained within
the mobile device. Reflecting these increased capabilities, we
note that Semantic Web technology has already been deployed
on mobile platforms, with a number of RDF data stores
allowing the querying and manipulation of RDF data. These
include RDF On the Go [5], AndroJena1, i-MoCo [6], and
systems such as MobiSem [7]. In order to develop mobile
decision support systems, consuming semantically described
health data, the next step is to deploy Semantic Web reasoning
capabilities on mobile devices as well. In general, the ability
to perform reasoning locally on the mobile device, as opposed
to relying on remote services, is important for a number
of reasons. Relevant to the health domain, mobile devices
are now capable of collecting a range of health data from
individuals (such as blood pressure, heart rate, etc). Combined
with localized reasoning and decision support, this allows
the generation of suitable and timely clinical alerts, action
plans and recommendations, even in cases where connectivity
is lacking. Secondly, given the myriad of data that can be
collected about mobile users, privacy issues can play a role. A
patient could (rightly) be uncomfortable with sharing certain
medical data outside the mobile device. By deploying reason-
ing processes locally, no privacy-sensitive data needs to be
wirelessly communicated. Patient self-management approaches
in the health domain [8], [9], [10], as well as context-aware
systems [11], [12], have already recognized the potential of
deploying reasoning processes directly on a mobile device.

Regardless of their potential, work on mobile, general-
purpose Semantic Web reasoning engines is currently lack-
ing, both regarding freely available software solutions and
performance analysis. We currently have knowledge of only
one system suiting this description for the Android platform,
namely AndroJena. At the same time however, a number of
Javascript RDF stores and reasoning engines have become
available, which can be deployed on mobile platforms using
cross-platform development tools such as Phonegap2. Although
promising, some of these RDF stores currently lack reasoning
support, while others do not support Semantic Web data
and rules. Furthermore, their performance on mobile devices
and under a realistic, health domain scenario, needs to be

1http://code.google.com/p/androjena/
2http://phonegap.com/



investigated. Various factors, such as the type of reasoning
and the data- and ruleset scale, can greatly influence reasoning
efficiency. Adding to this is the fact that, although the capa-
bilities of mobile devices have grown considerably in recent
years, they are still very limited when compared to a server or
even a contemporary desktop system.

In this paper, we present a comparison of four currently
available mobile reasoning engines, applied on Semantic Web
data and rules from the health domain. We study a number
of performance criteria, including data and rule loading times,
reasoning times and memory consumption, during reasoning
processes typical for mobile clinical decision support. We eval-
uate AndroJena, a native Android framework, and RDFQuery3

[13], RDFStore-JS4 [14] and Nools5, which are Javascript
systems. To suit our purposes of mobile, Semantic Web-based
reasoning, we extended RDFStore-JS with (naïve) reasoning
support, while a Semantic Web layer was built on top of
the Nools engine. In order to determine the scalability of
mobile Semantic Web reasoning, we performed this benchmark
with increasing amounts of data. The benchmark dataset and
inference rules are derived from the Integrated Management
Program Advancing Community Treatment of Atrial Fibrilla-
tion (IMPACT-AF) project, for providing a Clinical Decision
Support System (CDSS) for AF patients [15]. We note that this
ruleset has not been optimized to suit the inner mechanisms
of the different reasoning engines (e.g., RETE [16]), nor the
particular structure and composition of the benchmark dataset.
Systematically investigating the effect of the various existing
optimization techniques, while a very interesting research
question, is beyond the scope of this paper.

The rest of this paper is structured as follows : Section II
briefly describes the area of Semantic Web reasoning, and
summarizes the evaluated reasoning engines. Next in Sec-
tion III, we describe our approach for our benchmark compar-
ison, including the benchmark domain, deployment scenario
and concrete setup. Afterwards, Section IV illustrates the
benchmark results, while Section V discusses and reflects on
these results. In Section VI, we shortly mention other related
benchmarking approaches. Finally, we present conclusions and
future work in Section VII.

II. GENERAL BACKGROUND

A key component of the Semantic Web is the Resource
Description Framework (RDF) [17], which represents knowl-
edge as a set of facts in the form of subject, predicate, object
(s, p, o) triples. The Web Ontology Language (OWL) [18],
which has a formal grounding in Description Logics (DL),
allows to define restrictions on RDF datasets depending on the
underlying domain (e.g., healthcare); for instance, including
subtype, subproperty and cardinality constraints. Given these
restrictions, reasoners are able to make useful inferences on the
RDF data. However, in many domains, including the clinical
domain, more extensive and custom reasoning is generally

3https://code.google.com/p/rdfquery/wiki/RdfPlugin
4http://github.com/antoniogarrote/rdfstore-js
5https://github.com/C2FO/nools

required to operationalize all relevant knowledge [19]. In par-
ticular, knowledge often needs to be encoded as a set of general
IF-THEN rules. Reflecting this need, various rule languages
have been proposed to supplement the OWL semantics in the
Semantic Web, including SWRL and SPIN.

As mentioned, freely and publicly available mobile Se-
mantic Web reasoning engines, supporting rule-based reason-
ing, are currently lacking. Therefore, we elected to include
Javascript RDF stores and reasoning engines in our compar-
ison, which can be deployed in native mobile apps using
cross-platform development tools such as Phonegap. Below,
we elaborate on the four benchmarked systems.

A. Reasoning Engines
1) AndroJena: Apache Jena6 is a well-known Java frame-

work for working with Semantic Web data. AndroJena is a
ported version of this framework to the Android platform. RDF
data can be directly loaded from a local or remote source into
an RDF store called a Model, supporting a wide range of RDF
syntaxes (e.g., RDF/XML).

Regarding reasoning, AndroJena supplies an RDFS, OWL
and rule-based reasoner. The latter provides both forward and
backward chaining, respectively based on the standard RETE
algorithm [16] and Logic Programming (LP). In addition, the
reasoning engine supports a hybrid execution model, where
both mechanisms are employed in conjunction7. Rules are
specified using their Domain-Specific Language (DSL), which
resembles a SPARQL-like rule syntax, and are parsed and
passed to a reasoner object. By applying this reasoner on a
populated Model, an InfModel is created, which supplies query
access to the inferred RDF statements. Afterwards, new facts
can be added to this InfModel; after calling the rebind method,
the reasoning step will be re-applied.

2) RDFQuery: RDFQuery is an RDF plugin for the well-
known jQuery8 JavaScript library. RDFQuery makes an effort
to bridge the gap between the Semantic Web and the regular
Web, by allowing developers to directly query RDF (e.g.,
injected via RDFa [20]) gleaned from HTML pages. RDF
datastores can also be populated directly with RDF triples.

In addition to querying, RDFQuery also supports rule-based
reasoning. Conditions in these rules comprise triple patterns
and general-purpose filters, implemented by JavaScript func-
tions. Filter functions are called for each currently matching
data item; based on their return value, items are kept or
discarded. The reasoning algorithm is "naïve", meaning rules
are executed in turn until no more new results occur9.

3) RDFStore-JS: RDFStore-JS is a JavaScript RDF graph
store, and can be either deployed in the browser or as a
module in Node.js10, a server-side JavaScript environment.
Comparable to AndroJena (see Section II-A1), triples can be
loaded into an RDF store from a local or remote data source,
supporting multiple RDF syntaxes.

6https://jena.apache.org/
7See http://jena.apache.org/documentation/inference/#rules
8http://jquery.com
9The engine had to be extended to resolve variables in the rule result.
10http://nodejs.org/



Regarding querying, RDFStore-JS supports SPARQL 1.0
together with parts of the SPARQL 1.1 specification. Since
RDFStore-JS does not natively support rule-based reasoning,
we extended the system with a reasoning mechanism that
accepts rules as SPARQL 1.1 INSERT queries. In these
queries, the WHERE clause represents the rule condition and
the INSERT clause the rule result. This mechanism is naïve,
executing each rule in turn until no more new results are
inferred (cfr. RDFQuery).

4) Nools: Nools is a RETE-based rule engine, written in
JavaScript. Analogous to RDFStore-JS, this system can be
deployed both on Node.js as well as in the browser.

As opposed to the other evaluated systems, Nools does not
natively support RDF. Consequently, we developed a Semantic
Web layer on top of Nools, which accepts RDF data (N-Triples
format) and a SPARQL-like rule syntax (i.e., a simplified
version of the SPIN syntax). In the explanation below, we
indicate the extensions to Nools required to realize this layer.

In contrast to the two other evaluated JavaScript systems,
Nools presents a fully-fledged reasoning engine, supporting
a non-naïve reasoning algorithm (RETE). The engine is also
used differently when performing reasoning. In case of Nools,
a developer first supplies the rules in the form of a flow,
formulating them using their DSL. Custom data types can
be included in the rule definitions (e.g., data type Message
when dealing with messages), which can then be instantiated
in the incoming dataset and referenced in the defined rules.
To realize our Semantic Web extension, we defined custom
RDFStatement, RDFResource, RDFProperty and RDFLiteral
data types. Incoming rules are automatically converted to rules
in the Nools DSL referencing these data types.

A session is an instance of the flow, containing the RETE
working memory in which new facts are asserted. After
creating and compiling the rule flow, the dataset is asserted
in the session, whereby the asserted data can be matched to
the defined rules. In our Semantic Web layer, the RDF dataset
is converted to instances of the aforementioned custom data
types, and asserted as facts in the session.

5) Summary: Below, we classify each system with regards to
our relevant criteria: mobility, reasoning support, and support
for Semantic Web data and rules. In addition, we position the
systems relative to our benchmark ruleset and dataset.

Mobility: AndroJena is the only engine specifically meant
for mobile deployment. At the same time however, it is not
clear to what extent reasoning was optimized for mobile
devices, or simply ported from the desktop- (and server-)
oriented Apache Jena. The other three engines were developed
for use on either the server-side or in a desktop browser,
and were deployed on mobile devices via a cross-platform
development tool. As such, it is unclear for any of these
systems how well they will perform on a mobile platform.

Reasoning support: Nools, AndroJena and RDFQuery
have built-in reasoning support, whereby only AndroJena and
Nools feature non-naïve reasoning mechanisms. We extended
RDFStore-JS with naïve reasoning support for the purposes
of our benchmark. We note that our real-world dataset and
ruleset (described in Section III-A) does not require chaining
or advanced conflict resolution, aspects of reasoning that

would surely be better handled by the fully-fledged Nools and
AndroJena reasoning engines.

Semantic Web support: Nools was the only reasoning
engine without explicit Semantic Web support. To remedy this,
we built a Semantic Web layer on top of the system, leveraging
their supplied extension support (e.g., custom data types).

III. APPROACH

In this section we give a description of the approach fol-
lowed in our benchmark, including the domain and deployment
scenario as well as the practical setup.

A. Benchmark Domain
The benchmark data- and ruleset are based on ongoing work

on the Integrated Management Program Advancing Commu-
nity Treatment of Atrial Fibrillation (IMPACT-AF) project.
IMPACT-AF aims to provide Web and mobile-based clinical
decision support tools for primary care providers and patients,
with the goal of better managing Atrial Fibrillation (AF).

A patient’s AF dataset comprises health factors related
to AF, including clinically relevant personal info (e.g., age,
gender) and health measurements (e.g., blood pressure), for
instance dynamically collected from wireless and wearable
sensors [21]. In addition, it contains AF-specific symptoms
and the International Normalized Ratio (INR).

In addition to measurements, the dataset also contains per-
sonalized upper and lower limits for the different kinds of
clinical facts, indicating problematic situations for the partic-
ular patient. For every collected fact, the timestamp and value
are recorded. In Code 1, we give an example RDF snippet
encoding a clinical fact (namespaces omitted for brevity),
accompanied by its patient-specific limits.

impact:Patient0 impact:hasINR impact:INR0 ;

impact:hasLowerLimitTargetINR impact:LowerINR ;

impact:hasUpperLimitTargetINR impact:UpperINR .

impact:INR0 impact:hasValue "4.34" .

impact:LowerINR impact:hasValue "2.5" .

impact:UpperINR impact:hasValue "3.5" .

Code 1: Example clinical fact from AF dataset.

The AF ruleset is derived from guidelines for the treatment
of Atrial Fibrillation, given by the Canadian Cardiovascular
Society [22] and European Society of Cardiology [23].

The IMPACT-AF Clinical Decision Support System (CDSS)
comprises two reasoning components: a mobile, client-side
component, which yields increased responsiveness and is uti-
lized to execute time-critical, lightweight reasoning tasks; and
a server-side component, performing heavyweight reasoning
(involving more rules and data). The rule- and datasets used in
this benchmark are deployed on the mobile CDSS component.

B. Deployment Scenario
In our experience, a mobile app can apply reasoning in two

general process flows to realize clinical decision support:



Frequent Reasoning: In the first process flow, the mobile
app stores collected health measurements and observations,
collectively called clinical facts, in a data store. To infer new
clinical conclusions, frequent reasoning is periodically applied
to the datastore, comprising all collected data together with the
patient’s profile. Concretely, this entails loading a reasoning
engine with the entire datastore each time a certain timespan
has elapsed, and executing the relevant ruleset.

Incremental Reasoning: In the second process flow, the
mobile app implements clinical decision support by applying
reasoning each time a new clinical fact is entered. In this
case, the reasoning engine is loaded with an initial baseline
dataset, containing the patient’s clinical profile and historical
(e.g., previously entered) clinical facts. Afterwards, the engine
is kept in memory, whereby new facts are dynamically added
to the reasoning engine. Each time, reasoning is re-applied to
infer new clinical conclusions11.

Figure 1 shows Frequent Reasoning (FR) and Incremental
Reasoning (IR) for RDFQuery, RDFStore-JS and AndroJena,
where data is first loaded into the engine and rules are
subsequently executed. Figure 2 shows the same process flows
for Nools, where rules are first loaded into the engine followed
by the dataset. For both diagrams, Frequent Reasoning entails
going through the entire diagram each time a particular times-
pan has elapsed (time event), whereby Dataset stands for all
relevant data. For Incremental reasoning, the system traverses
the diagram from start to finish at startup time (whereby
Dataset represents the baseline dataset). The system then
proceeds from the indicated place (see receive-signal event)
each time a new fact is received.

Fig. 1: Illustration of two CDSS process flows (RDFQuery,
RDFStore-JS, AndroJena)

It is clear that the former flow reduces responsiveness to
new clinical facts, while also incurring a larger performance
overhead since the entire dataset needs to be continuously
re-loaded. At the same, the latter process flow results in a
larger consistent memory overhead, since the reasoning engine
is continuously kept in memory. We note that other process
flows are also possible, combining characteristics from the two
described above; e.g., a hybrid scenario, whereby responsive-
ness is ensured by re-loading the dataset and executing the

11An algorithm is proposed in [24] to optimize this kind of reasoning.

ruleset each time a new clinical fact is entered; sacrificing
performance to reduce consistent memory load. Our goal in
this paper is not to identify the most suitable process flow
to realize mobile clinical decision support. Instead, we aim
to evaluate (in our experience) two useful process flows, and
compare the performance of the evaluated engines in each flow.

Fig. 2: Illustration of two CDSS process flows (Nools)

C. Benchmark Setup

Below, we elaborate on the practical setup of the bench-
marks, including the concrete deployment of the reasoning
engines, studied performance metrics, utilized dataset and
ruleset, measurement methodology and benchmark hardware.

1) Concrete deployment: In order to deploy the JavaScript
reasoning engines (see section II) to a mobile app, we used the
Phonegap cross-platform development tool. Phonegap allows
developers to run local, embedded Websites in native mobile
apps, which are built using standardized Web technologies
such as HTML, CSS and JavaScript. Importantly, Phonegap
also allows local JavaScript code to access device features via
plugins, such as the device camera, native storage, contacts
and notifications. The AndroJena reasoning engine was directly
deployed to a native Android app.

2) Performance metrics: In our benchmark, we study and
compare the following performance metrics, due to their
relevance to the considered process flows:

• Data and rule loading times: Time needed to load data
(and rules, if necessary) into the reasoning engine.

• Reasoning times: Time needed to execute the rules on
the dataset and infer new data.

• Memory consumption: Memory consumed by the rea-
soning engine.

3) Dataset and ruleset: For our benchmark, we use an Atrial
Fibrillation (AF) decision support ruleset encompassing a total
of 10 rules. For each rule, the rule head refers to the latest
clinical fact of a certain type (e.g., blood pressure, INR) and
checks whether its value is out of bounds, given the related
patient-specific limit. If so, a clinical conclusion is inferred
in the rule body, indicating the severity of the situation, type
of conclusion, label and identifier of the triggered rule. No
chaining occurs in the ruleset.



As mentioned in the introduction, we note the ruleset was
not optimized to suit the employed reasoning mechanisms
(e.g., RETE, Logic Programming) or dataset composition. A
number of relevant techniques can be utilized for this purpose,
for instance based on RETE [25] or borrowed from SPARQL
query optimization [26], [27]. Investigating and measuring the
effects of the various potential optimizations is beyond the
scope of this paper, and will be considered in future work.

We generated benchmark datasets containing the clinical
data described in Section III-A, whereby fact values were
created based on ranges encompassing both clinically normal
values as well as abnormal ones. With the goal of investigating
the scalability of mobile reasoning, our benchmarks consider a
sequence of datasets, each containing an increasing amount of
data. These datasets contain personal clinical info (e.g., weight,
height) and additionally comprise 1 (137 triples), 5 (393
triples), 10 (713 triples), 25 (1673 triples), 50 (3273 triples)
and 75 (4873 triples) health measurements and observations,
respectively. Each dataset triggers 40-50% of the rules. The
dataset and ruleset can be found at https://niche.cs.dal.ca/wic.

4) Measurement methodology: To minimize the impact of
background OS processes on results, we ran each performance
benchmark 20 times and calculated the average execution
times. Memory usage had to be measured differently for
the JavaScript engines and the native Android engine. For
AndroJena, the Android API was used to obtain a heap
dump, which was later analyzed using the Eclipse Memory
Analyzer12 (MAT). For the JavaScript engines, the Chrome
DevTools remote debugging support13 was utilized to record
and analyze heap allocations during loading and reasoning
steps. In order to use this remote debugging support, we had
to separately run our local Website, normally deployed in
the Phonegap mobile app (see Section III-C1), in the mobile
Chrome browser. Since both the WebView created by the
Phonegap app and mobile Chrome utilize the same mobile
WebKit engine, both deployment scenarios should result in the
same memory allocations14. To evaluate the AndroJena rea-
soning engine, we relied on the default configuration settings,
which uses the hybrid execution model (see Section II-A1).

5) Hardware: The benchmarks were performed on a Sam-
sung Galaxy SIII (model number GT-I9300), with a 1.4GHz
quad-core processor, 1GB RAM and 16GB persistent storage.
The installed Android OS was version 4.3 (Jelly Bean) with
API level 18. This model is currently two generations old at
the time of writing (with the new Galaxy S5 model soon to be
released). As such, this better reflects a real-world scenario,
where users typically do not possess the latest device model.

IV. RESULTS

In the two sections below, we show the benchmark results
for each studied process flow (see Section III-B).

12https://www.eclipse.org/mat/
13https://developers.google.com/chrome-developer-tools/docs/

remote-debugging
14Due to errors when running Nools in mobile Chrome, memory measure-

ments for that engine were obtained via the desktop Chrome. However, these
allocations are equivalent to the ones made in mobile Chrome.

A. Process flow 1: Frequent Reasoning
In this process flow, the reasoning engine is loaded with

the entire dataset, and executed with the given ruleset. Table I
summarizes the average times of the loading step for each
engine. We note that for Nools, these loading times also
include loading the rules into the engine, in order to build
the internal RETE network. On average, this rule-loading time
amounts to 7010 ms. In the table, we separately indicate the
data loading time between parenthesis for Nools.

# triples RDFQuery RDFStore-JS Nools AndroJena
137 55 197 7187 (250) 99
393 197 528 7583 (877) 129
713 292 878 9103 (1762) 358
1673 512 1795 12174 (5198) 541
3273 814 3687 21020 (14539) 1189
4873 1453 5008 49465 (41845) 1560

TABLE I: Loading times for increasing dataset sizes (ms)

These results are visualized in Figure 3. Since the ex-
ceedingly high loading times for Nools skew the graph, we
show the loading times for only RDFQuery, RDFStore-JS and
AndroJena in Figure 4.

Fig. 3: Loading times for increasing dataset sizes

Fig. 4: Loading times for increasing dataset sizes (excluding Nools)

Table II shows the average performance overhead of the rule
execution step. We note that for some reasoning engines, this
step includes first creating rule objects; since this rule creation
step turned out to be trivial (never exceeding 50 ms), these
times were added to the displayed results.



# triples RDFQuery RDFStore-JS Nools AndroJena
137 156 1090 30 92
393 530 1290 37 83
713 1090 1197 47 393
1673 6029 1486 42 3302
3273 35405 1931 34 24537
4873 106722 2306 358 78549

TABLE II: Reasoning times for increasing dataset sizes (ms)

Figure 5 visualizes these results. Since the reasoning times
for AndroJena and RDFQuery become exceedingly high for
large datasets, we separately show the reasoning times for the
RDFStore-JS and AndroJena engines in Figure 6.

Fig. 5: Reasoning times for increasing dataset sizes

Fig. 6: Reasoning times for increasing dataset sizes (excluding
AndroJena)

We note that, in this process flow, the loading and reasoning
steps are always performed together and in sequence. We show
the total times for the loading and reasoning steps in Table III.

# triples RDFQuery RDFStore-JS Nools AndroJena
137 211 1287 7217 191
393 727 1818 7620 212
713 1382 2075 9150 751
1673 6541 3281 12216 3843
3273 36219 5618 21054 25726
4873 108175 7314 49823 80109

TABLE III: Total times for increasing dataset sizes (ms)

Table IV shows the memory usage for each reasoning
engine. We note these measurements were taken right after
the reasoning step was performed; and before any cleanup has
occurred (e.g., releasing resources occupied by the engine).

# triples RDFQuery RDFStore-JS Nools AndroJena
137 407 146 625 163
393 544 235 1186 201
713 695 347 1376 260
1673 1186 687 3576 422
3273 1944 1255 4536 759
4873 2707 1785 5556 1048

TABLE IV: Memory usage for increasing dataset sizes (Kb)

These results are visualized in Figure 7.

Fig. 7: Memory usage for increasing dataset sizes

B. Process flow 2: Incremental Reasoning

In this process flow, the reasoning engine is initially loaded
with a baseline dataset, after which new facts are dynamically
loaded into the engine as they are entered. As baseline dataset,
we employed the dataset containing 25 clinical facts (1673
triples), whereby we additionally loaded a single clinical fact
(5 triples) to the engine. Afterwards, the reasoning step is
performed. In Table V, we show the average times for this
single loading step and reasoning step, and the total time
adding both averages together. For the loading times of the
baseline dataset, we refer to Table I.

RDFQuery RDFStore-JS Nools AndroJena
loading 38 8 15 18

reasoning 6097 1440 12 3403
total 6135 1448 27 3421

TABLE V: Loading times for a single clinical fact (ms)

V. DISCUSSION

Below, we discuss the obtained results.



A. Process flow 1: Frequent Reasoning
Figure 3 shows the average loading times for increasing

dataset sizes. This graph shows the Nools loading time is
problematic, especially for large datasets (> 1673). However,
we note this loading time also includes a constant time for
loading the rules (ca. 7 s). For smaller sources (≤ 713 triples),
the data loading time (shown between brackets in Table I) is
reasonable, although still higher than for the other engines.
We also note that rule loading time will be lower for smaller
rulesets15. Figure 4 zooms in on the loading times for the
other reasoning engines. The figure shows that RDFQuery and
AndroJena have good loading performance, even for the largest
dataset (4873 triples); while the RDFStore-JS loading times
increases significantly with the dataset size.

On the other hand, Figure 5 illustrates that RDFQuery and
AndroJena, while still performing well for smaller datasets
(≤ 713 triples), have very problematic reasoning performance
for larger datasets (> 1673 triples). Table II shows that,
although initially high, the RDFStore-JS reasoning time rises
comparably much slower as the dataset size increases. We
observe that Nools has by far the best overall reasoning
performance, never exceeding 100 ms (except for the largest
dataset). Table III shows the total times for each engine, includ-
ing loading and reasoning. Finally, regarding memory usage,
Nools consumes the most memory during reasoning, while the
memory consumption for the other three engines are relatively
close together. Overall, AndroJena has the lowest memory
overhead, barely exceeding 1Mb for the largest dataset.

Overall, we conclude that RDFStore-JS presents the most
scalable solution in this process flow, performing best for
larger datasets (≥ 1673 triples); since its reasoning times stay
relatively stable for increasing dataset sizes. AndroJena is the
best solution for smaller datasets (< 1673 triples), with its
overall low loading and reasoning times for small sources.

B. Process flow 2: Incremental Reasoning
Figure V shows the average times for loading a single

clinical fact (5 triples) into the reasoning engine, given an
initial baseline dataset of 25 clinical facts. As was to be
expected from our discussion above, Nools performs extremely
well for this reasoning step, with almost negligible reasoning
times. In contrast, reasoning times for the other three engines
is comparable to their reasoning performance for this dataset
size in the first process flow.

We conclude that, once the initial data and rule loading is out
of the way, Nools has by far the best reasoning performance
when incrementally adding facts in this process flow. As noted
in the previous section, Nools data loading times for small
datasets are still acceptable (while the rule loading time will
also decrease with the ruleset size). Therefore, Nools is the
best option for this flow in case of small datasets (≤ 713
triples) and rulesets, since the low reasoning time makes up for
the increase initialization time. In case scalability is required,
RDFStore-JS is still the best option, with its scalable loading
times (compared to Nools) and reasoning times (compared to
RDFQuery and AndroJena).

15This was observed during other experiments.

VI. RELATED WORK

There are a number of works that aim to facilitate bench-
marking RDF(S)/OWL repositories and reasoning engines.

The Lehigh University Benchmark [28] supplies a set of
test queries and a data generator to generate datasets, both
referencing a university ontology. In addition, a test module
is provided for carrying out data loading and query testing.
Similarly, the Berlin SPARQL benchmark [29] supplies test
queries, a data generator and test module for an e-commerce
scenario. We note that these two works consider different
application domains, do not support benchmarks for rule-based
reasoning, and only focus on desktop and server setups.

OpenRuleBench [30] is a collection of benchmarks for
comparing and analyzing the performance of a supported set
of rule engines. It comprises a test suite for benchmarking
internal reasoning engine aspects such as large joins and
datalog recursion. The supported rule engines are meant for
deployment on desktop or server UNIX environments, and are
thus not meant for mobile deployment.

VII. CONCLUSION AND FUTURE WORK

We note that, aside from AndroJena, none of the evaluated
reasoning engines were actually meant for mobile deployment.
Despite this, the benchmark results illustrate that, given a
real-world clinical dataset and ruleset, and situated within
a mobile clinical decision support scenario for patient self-
management, these reasoning engines are usable on mobile
platforms. Regarding the first decision support process flow,
the most efficient total times remain below 1s for small sources
(≤ 713 triples). Nools already presents an efficient solution for
the second process flow, given the initial dataset and ruleset
are small (≤ 713 triples).

However, we also observe that scalability is certainly an
issue, with most efficient total times for the first process flow
rising to ca. 7s for large datasets (4873 triples). When collect-
ing increasing amounts of clinical data, or when working in
different domains (e.g., context-awareness), datasets will likely
exceed this size. As such, more work is needed on optimizing
general-purpose, Semantic Web rule-based reasoning engines
for mobile deployment. Automatically fine-tuning the rules to
suit the particular reasoning mechanism and/or dataset (see
Section III-C3) has the potential to yield large performance
gains, and would be a very good step in this direction.

We also note that distributed CDSS systems (e.g., as imple-
mented in the IMPACT-AF project and [9], [10]) can cope with
this scalability issue by delegating lightweight, time-critical
reasoning tasks to the client-side, and performing more heavy-
weight reasoning on the server. In doing so, such approaches
exploit the advantages of mobile, client-side reasoning while
still guaranteeing efficient performance. Additionally, we note
the benchmark device is currently two generations old; while
this better reflects a real-world usage scenario, more advanced
devices will clearly yield better reasoning performance.

Future work consists of extending our current benchmark
setup into an extensible framework, which enables developers
to use any rule- and dataset in benchmarks, and allows new
reasoning engines to be plugged in as well. In doing so, we



aim to aid mobile developers in choosing the most suitable
reasoning engine for their purpose. Finally, future benchmarks
will be performed with datasets and rulesets requiring more
advanced reasoning techniques (e.g., chaining, conflict resolu-
tion), while different optimization techniques will be applied
as well to systematically evaluate their impact on performance.
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